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Learning to act

Optimal Decision-Making
Which action at should we choose in state st to maximise a
cumulative reward R?

max
π

E
at∼π(at |st )

[ ∞∑
t=0

γtR(st , at)

]

X A very general formulation

7 Not widely used in the industry
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Learning to act

Optimal Decision-Making
Which action at should we choose in state st to maximise a
cumulative reward R?

max
π

E
at∼π(at |st )

[ ∞∑
t=0

γtR(st , at)

]

X A very general formulation
7 Not widely used in the industry

> Sample efficiency
> Trial and error
> Unpredictable behaviour
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Limitation of Reinforcement Learning

Reinforcement learning relies on a single reward function R

X A convenient formulation, but;
7 R is not always easy to design.

Conflicting Objectives
Complex tasks require multiple contradictory aspects. Typically:

Task completion vs Safety

For example...
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Example problems with conflicts

Dialogue systems
A slot-filling problem: the agent fills a form by asking the user
each slot. It can either:
• ask to answer using voice (safe/slow);
• ask to answer with a numeric pad (unsafe/fast).

Autonomous Driving
The agent is driving on a two-way road with a car in front of it,
• it can stay behind (safe/slow);
• it can overtake (unsafe/fast).
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Limitation of Reinforcement Learning

Reinforcement learning relies on a single reward function R
X A convenient formulation, but;
7 R is not always easy to design.

Conflicting Objectives
Complex tasks require multiple contradictory aspects. Typically:

Task completion vs Safety

For example...

For a fixed reward function R,
no control over the Task Completion

Safety trade-off
π∗ is only guaranteed to lie on a Pareto-optimal curve Π∗
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The Pareto-optimal curve

Task Completion 𝐺1 = ∑𝛾𝑡𝑅1
𝑡

Safety 𝐺2 = ∑𝛾𝑡𝑅2
𝑡

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑡(𝑅1, 𝑅2)
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From maximal safety to minimal risk

Task Completion 𝐺𝑟

Risk 𝐺𝑐

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑡(𝑅𝑟 , −𝑅𝑐)
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The optimal policy can move freely along Π∗

Task Completion 𝐺𝑟

Risk 𝐺𝑐

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑡(𝑅𝑟 , −𝑅𝑐)

𝜋∗
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How to choose a desired trade-off

Task Completion 𝐺𝑟

Risk 𝐺𝑐

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑟
𝑡

𝑠. 𝑡. ∑𝛾𝑡𝑅𝑐
𝑡 < 𝛽

𝜋∗

𝛽
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Constrained Reinforcement Learning

Markov Decision Process
An MDP is a tuple (S,A,P,Rr , γ) with:

• Rewards Rr ∈ RS×A

• Costs Rc ∈ RS×A

• Budget β

Objective
Maximise rewards

maxπ∈M(A)S E [
∑∞

t=0 γ
tRr (st , at) | s0 = s]

s.t. E [
∑∞

t=0 γ
tRc(st , at) | s0 = s] ≤ β
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Constrained Reinforcement Learning

Constrained Markov Decision Process
A CMDP is a tuple (S,A,P,Rr ,Rc , γ, β) with:

• Rewards Rr ∈ RS×A • Costs Rc ∈ RS×A

• Budget β

Objective
Maximise rewards while keeping costs under a fixed budget

maxπ∈M(A)S E [
∑∞

t=0 γ
tRr (st , at) | s0 = s]

s.t. E [
∑∞

t=0 γ
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We want to learn Π∗ rather than π∗β

Task Completion 𝐺𝑟

Risk 𝐺𝑐

Pareto-optimal curve Π∗

argmax
𝜋

∑𝛾𝑡𝑅𝑟
𝑡

𝑠. 𝑡. ∑𝛾𝑡𝑅𝑐
𝑡 < 𝛽

𝜋∗

𝛽
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Budgeted Reinforcement Learning

Budgeted Markov Decision Process
A BMDP is a tuple (S,A,P,Rr ,Rc , γ,B) with:

• Rewards Rr ∈ RS×A • Costs Rc ∈ RS×A

• Budget space B

Objective
Maximise rewards while keeping costs under an adjustable budget.
∀β ∈ B,

maxπ∈M(A×B)S×B E [
∑∞

t=0 γ
tRr (st , at) | s0 = s, β0 = β]

s.t. E [
∑∞

t=0 γ
tRc(st , at) | s0 = s, β0 = β] ≤ β
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Problem formulation

Budgeted policies π
• Take a budget β as an additional input
• Output a next budget β′

• π : (s, β)︸ ︷︷ ︸
s

→ (a, β′)︸ ︷︷ ︸
a

Augment the spaces with the budget β
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Augmented Setting

Definition (Augmented spaces)
• States S = S × B.
• Actions A = A× B.
• Dynamics P

state (s, β), action (a, βa)→ next state
{

s ′ ∼ P(s ′|s, a)

β′ = βa

Definition (Augmented signals)
1. Rewards R = (Rr ,Rc)

2. Returns Gπ = (Gπ
r ,Gπ

c )
def
=
∑∞

t=0 γ
tR(st , at)

3. Value V π(s) = (V π
r ,V π

c )
def
= E [Gπ | s0 = s]

4. Q-Value Qπ(s, a) = (Qπ
r ,Qπ

c )
def
= E [Gπ | s0 = s, a0 = a]
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Policy Evaluation

Proposition (Budgeted Bellman Expectation)
The Bellman Expectation equations are preserved

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a)

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P
(
s ′
∣∣ s, a

)
V π(s ′)

Proposition (Contraction)
The Bellman Expectation Operator T π is a γ-contraction.

T πQ(s, a)
def
= R(s, a) + γ

∑
s′∈S

∑
a′∈A

P(s ′|s, a)π(a′|s ′)Q(s ′, a′)

X We can evaluate a budgeted policy π
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Budgeted Optimality

Definition (Budgeted Optimality)
In that order, we want to:

(i) Respect the budget β:

Πa(s)
def
= {π ∈ Π : V π

c (s, β)≤ β}

(ii) Maximise the rewards:

V ∗r (s)
def
= maxπ∈Πa(s)V π

r (s) Πr (s)
def
= arg maxπ∈Πa(s)V π

r (s)

(iii) Minimise the costs:

V ∗c (s)
def
= minπ∈Πr (s)V π

c (s), Π∗(s)
def
= arg minπ∈Πr (s)V π

c (s)

We define the budgeted action-value function Q∗ similarly
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Budgeted Optimality

Theorem (Budgeted Bellman Optimality Equation)
Q∗ verifies the following equation:

Q∗(s, a) = T Q∗(s, a)

def
= R(s, a) + γ

∑
s′∈S

P(s ′|s, a)
∑
a′∈A

πgreedy(a′|s ′; Q∗)Q∗(s ′, a′)

where the greedy policy πgreedy is defined by:

πgreedy(a|s; Q) ∈arg minρ∈ΠQ
r

E
a∼ρ

Qc(s, a),

where ΠQ
r

def
=arg maxρ∈M(A) E

a∼ρ
Qr (s, a)

s.t. E
a∼ρ

Qc(s, a)≤ β
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The optimal policy

Proposition (Optimality of the policy)
πgreedy(· ; Q∗) is simultaneously optimal in all states s ∈ S:

πgreedy(· ; Q∗) ∈ Π∗(s)

In particular, V πgreedy(·;Q∗) = V ∗ and Qπgreedy(·;Q∗) = Q∗.

Proposition (Solving the non-linear program)
πgreedy can be computed efficiently, as a mixture πhull of two
points that lie on the convex hull of Q.

πgreedy = πhull

21 -Budgeted Reinforcement Learning- Carrara N., Leurent E.



Solving the non-linear program: intuition

�

��

��

dominated points

�( , )�
⎯⎯⎯


⎯ ⎯⎯⎯⎯
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Convergence analysis

Recall what we’ve shown so far:

T −−−−−−−→
fixed−point

Q∗ −−−−−→
tractable

πhull(Q∗) −−−→
equal

πgreedy(Q∗) −−−−→
optimal

We’re almost there!
All that is left is to perform Fixed-Point Iteration to compute Q∗.

Theorem (Non-Contractivity)
For any BMDP (S,A,P,Rr ,Rc , γ) with |A| ≥ 2, T is not a
contraction.

∀ε > 0,∃Q1,Q2 ∈ (R2)SA : ‖T Q1 − T Q2‖∞ ≥
1
ε
‖Q1 − Q2‖∞

7 We cannot guarantee the convergence of T n(Q0) to Q∗
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Not a contraction: intuition
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Convergence analysis

Thankfully,

Theorem (Contractivity on smooth Q-functions)
T is a contraction when restricted to the subset Lγ of Q-functions
such that ”Qr is L-Lipschitz with respect to Qc”, with L < 1

γ − 1.

Lγ =

{
Q ∈ (R2)SA s.t. ∃L < 1

γ − 1 : ∀s ∈ S, a1, a2 ∈ A,
|Qr (s, a1)− Qr (s, a2)| ≤ L|Qc(s, a1)− Qc(s, a2)|

}

X We guarantee convergence under some (strong) assumptions
X We observe empirical convergence
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Budgeted Dynamic Programming

Algorithm 1: Budgeted Value-Iteration
Data: P,Rr ,Rc
Result: Q∗

1 Q0 ← 0
2 repeat
3 Qk+1 ← T Qk
4 until convergence
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Extension to the RL setting

We address several limitations of Budgeted Value-Iteration
1. If the P, Rr and Rc are unknown:

> Work with a batch of samples D = {(s i , ai , ri , s ′i}i∈[0,N]

> Replace T with a sampling operator T̂ :

T̂ Q(s i , ai , ri , s ′i )
def
= ri + γ

∑
a′

i∈Ai

πgreedy(a′i |s ′i ; Q)Q(s ′i , a′i ).

2. If S is continuous:

> Employ function approximation Qθ, and minimise a regression
loss

L(Qθ,Qtarget;D) =
∑
D
||Qθ(s, a)− Qtarget(s, a, r , s ′)||22
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Scalable implementation

• CPU parallel computing of the targets∑
a′i∈Ai

πgreedy(a′i |s ′i ; Q)Q(s ′i , a′i )

• Same for interactions with the environment.
• Neural Network for function approximation:

s0

s1

βa

Qr (a0)

Qr (a1)

Qc(a0)

Qc(a1)

(s, βa)

Encoder

Hidden
Layer 1

Hidden
Layer 2 Q
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A baseline approximate solution

Lagrangian Relaxation
Consider the dual problem so as to replace the hard constraint by a
soft constraint penalised by a Lagrangian multiplier λ:

max
π

E
∑

t
γtRr (s, a)− λγtRc(s, a)

• Train many policies πk with penalties λk and recover the cost
budgets βk

• Very data/memory-heavy
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Dialogue systems

A slot-filling problem: the agent (the dialogue system) fills a form
by asking the user each slot. It can either:
• ask to answer using voice (safe/slow);
• ask to answer with a numeric pad (unsafe/fast).

Gπ

r

Gπ

c
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Autonomous driving

The agent (the car) is on a two-way road with a car in front of it,
• it can stay behind (safe/slow);
• it can overtake (unsafe/fast).

Gπ

r

Gπ

c

39 -Budgeted Reinforcement Learning- Carrara N., Leurent E.
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Risk-sensitive exploration

How to collect the batch D?
We propose an ε-greedy exploration procedure:

• Sample an initial budget β0 ∼ U(B)

• At each step, where s = (s, β) only explore feasible budgets:

a = (a, βa) ∼ U(∆AB)

where ∆ is such that P (a, βa|s, β) verifiesE[βa] ≤ β

40 -Budgeted Reinforcement Learning- Carrara N., Leurent E.
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Corridors

Two corridors:
1. one with high costs / high rewards
2. the other with no costs / low rewards

→ Validate the risk-sensitive exploration procedure
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Corridors
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https://budgeted-rl.github.io/#risk-sensitive-exploration


Thank You!
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