Budgeted Reinforcement Learning
in Continuous State Space

Nicolas Carraral, Edouard Leurent!2,
Tanguy Urvoy®, Romain Laroche?,
Odalric Maillard!, Olivier Pietquin®®

inria Sequel, ?Renault Group,
3Orang;e Labs, *Microsoft Montréal,
5Google Research, Brain Team




Contents Motivation and Setting

Budgeted Dynamic Programming
Budgeted Reinforcement Learning
Experiments

2 -Budgeted Reinforcement Learning- Carrara N., Leurent E.



Motivation and
Setting

3 -Budgeted Reinforcement Learning- Carrara N., Leurent E.

ln

zea—



Learning to act

Optimal Decision-Making
Which action a; should we choose in state s; to maximise a
cumulative reward R?

max ny R(st, at)

m at~7r(at|st)
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Learning to act

Optimal Decision-Making
Which action a; should we choose in state s; to maximise a
cumulative reward R?

maX E ")/ St, at

™ at~7r(at|st)

V' A very general formulation
X Not widely used in the industry

> Sample efficiency
> Trial and error
> Unpredictable behaviour
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Limitation of Reinforcement Learning

Reinforcement learning relies on a single reward function R
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Reinforcement learning relies on a single reward function R
v A convenient formulation, but;

X R is not always easy to design.

Conflicting Objectives
Complex tasks require multiple contradictory aspects. Typically:

Task completion vs  Safety

For example...
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Example problems with conflicts

Dialogue systems

A slot-filling problem: the agent fills a form by asking the user
each slot. It can either:

e ask to answer using voice (safe/slow);

e ask to answer with a numeric pad (unsafe/fast).

s
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https://budgeted-rl.github.io/assets/highway-neutral.gif

Example problems with conflicts

Dialogue systems

A slot-filling problem: the agent fills a form by asking the user
each slot. It can either:

e ask to answer using voice (safe/slow);

e ask to answer with a numeric pad (unsafe/fast).

Autonomous Driving
The agent is driving on a two-way road with a car in front of it,
e it can stay behind (safe/slow);

e it can overtake (unsafe/fast).
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Limitation of Reinforcement Learning

Reinforcement learning relies on a single reward function R
v A convenient formulation, but;

X R is not always easy to design.

Conflicting Objectives

Complex tasks require multiple contradictory aspects. Typically:

Task completion vs  Safety

For example...

For a fixed reward function R,

Task Completion
L no control over the oy trade-off

L, 7* is only guaranteed to lie on a Pareto-optimal curve M*

rd
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The Pareto-optimal curve

b Task Completion G; = Yy‘R¢

Pareto-optimal curve IT*
argmax %y ‘R;(Ry, R,)
s

® >
Safety G, = ¥y'R}

rd
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From maximal safety to minimal risk

» Task Completion G,

Pareto-optimal curve IT*
argmax Yy ‘Re(R,, —R.)
w

s
9 -Budgeted Reinforcement Learning- Carrara N., Leurent E. hw



The optimal policy can move freely along [T*

» Task Completion G,

Pareto-optimal curve IT*
argmax Yy ‘Re(R,, —R.)
w
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How to choose a desired trade-off

» Task Completion G,

Pareto-optimal curve IT*
argmax YytRL
m

s.t. Yy'RE< B

7
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Constrained Reinforcement Learning

Markov Decision Process
An MDP is a tuple (S, A, P, R,,~) with:

e Rewards R, € RSx4
Objective

Maximise rewards

MaXze M(A)S E [Z?io Y R (st,at) | so = $]
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Constrained Reinforcement Learning

Constrained Markov Decision Process
A CMDP is a tuple (S, A, P, R,, Rc,, 3) with:

e Rewards R, € RSx4 e Costs R, € RSx4
e Budget 8

Objective
Maximise rewards while keeping costs under a fixed budget

MaXze M(A)S E [Z(t)io Y R (st, at) | so = 9]
st. E[} 2207 Re(st,ae) |so=5s] <8

rd
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We want to learn [1* rather than 7r2§

} Task Completion G,

Pareto-optimal curve IT*
argmax Yy R

-
s.t. TY'RE< B
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We want to learn [1* rather than 7r2§

» Task Completion G,

Pareto-optimal curve IT*
argmax Yy R

-
s.t. TY'RE< B
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Budgeted Reinforcement Learning

Budgeted Markov Decision Process
A BMDP is a tuple (S, A, P, R,, Rc,v, B) with:

e Rewards R, € RSx4 e Costs R, € RSx4
e Budget space B

Objective

Maximise rewards while keeping costs under an adjustable budget.
Vi € B,

maxX e pm(axp)sx8 B[ ooV Ri(st,at) | s0 =5, 60 = ]
s.t. E [Ziio ,thC(sh at) | So = 57/80 — /8] S /8

rd
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Problem formulation

Budgeted policies 7
e Take a budget 8 as an additional input
e Output a next budget 3
o m:(s,8) = (af)
N

s a

L, Augment the spaces with the budget 3

7
15 -Budgeted Reinforcement Learning- Carrara N., Leurent E. hw



Augmented Setting

Definition (Augmented spaces)

e States S =S x B.
e Actions A = A x B.

e Dynamics P
s’ ~ P(s'|s, a)

state (s, 3), action (a,3;) — next state {
B = PBa

Definition (Augmented signals)
1. Rewards R = (R,, R.)

2. Returns G™ = (G7, G7) &' "% 1tR(s,,3,)

3. Value V7(3) = (V" V) ¥ E[67 | 55 = 3]
4. Q-Value Q7(5,3) = (Q~, Q) ¥ E[G™ | 55 =5, = 3]

rd
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Programming
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Policy Evaluation
Proposition (Budgeted Bellman Expectation)
The Bellman Expectation equations are preserved
VT(s) =Y (als)Q" (5, 3)
acA
Q"(s,3) =R(5,3) +~ Y _P(s]53) V'(s)

seS

7
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Policy Evaluation

Proposition (Budgeted Bellman Expectation)

The Bellman Expectation equations are preserved
V7(s) =Y n(als)Q"(5,3)
acA
Q"(s,3) =R(5,3) +~ Y _P(s]53) V'(s)
s'eS
Proposition (Contraction)

The Bellman Expectation Operator T™ is a y-contraction.
T°Q(,3) € R(E3)+1 Y. > PE[53)(@[5)QE
seSacA

v" We can evaluate a budgeted policy 7

rd
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Budgeted Optimality

Definition (Budgeted Optimality)
In that order, we want to:
(i) Respect the budget 3:

M.G) & {(ren: vi(s, p)< B

(i) Maximise the rewards:
% (—y def T (— _y def T (—
Vr (5) = MaXzcn,(3) Vr (S) nf’(s) = arg MaXzcn,(s) Vr (S)
(iii) Minimise the costs:
s /— def . (= % /—y def . =
VE(s) = mingcn,s) VI (3), M*(s) = arg mincn, (s) V¢ (3)
We define the budgeted action-value function Q* similarly

rd
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Budgeted Optimality

Theorem (Budgeted Bellman Optimality Equation)

Q* verifies the following equation:
Q* (s, 5) =TQ*(s5,3)
= R (5,3)+7v Z P(s'|s,a) Z Tgreedy(3'|s"; Q*) Q% (s, &)

seS a'eA

where the greedy policy Tgreedy is defined by:
Tgreedy(3[5; Q) €arg minpen? 5INEp Q:(35,3),
where M9 ©arg max,c vz E Qr(S,3)
a~p

st. E Q(5,3)<p
a~p

7
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The optimal policy

Proposition (Optimality of the policy)

Tgreedy( ; Q%) is simultaneously optimal in all states s € S:
7Tgreedy(' , Q*) € |'|*(§)
In particular, Ve (iQ") = \/* and Qmereear(HQ") = Q.

Proposition (Solving the non-linear program)

Tgreedy Can be computed efficiently, as a mixture 7y, of two
points that lie on the convex hull of Q.

T greedy =— T hull
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—0G. A)

dominated points

Solving the non-linear program: intuition
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Solving the non-linear program: intuition

—0G. A)

dominated points
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Solving the non-linear program: intuition

—0G. A)

dominated points
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Convergence analysis

Recall what we've shown so far:

*

*
> Thull (Q7) —— Tgreed
fixed— point tractable “ ( ) equal greedy
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Convergence analysis

Recall what we've shown so far:

*

7 WhuII(Q*) E— Wgreedy(Q*) —_—
equal

fixed— point tractable optimal

We're almost there!
All that is left is to perform Fixed-Point Iteration to compute Q*.
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Convergence analysis

Recall what we've shown so far:

*

ﬂhuII(Q*) E— 7"'greedy((v-\)*) —_—
equal

fixed— point tractable optimal

We're almost there!
All that is left is to perform Fixed-Point Iteration to compute Q*.

Theorem (Non-Contractivity)

For any BMDP (S, A, P, R,, Rc,~v) with |A] > 2, T is not a
contraction.

Ve >0,3Q% Q2 € (RS : |TQ — TQ¥|w > énol — QY

X We cannot guarantee the convergence of 7"(Qp) to Q*

rd
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Not a contraction: intuition
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Not a contraction: intuition
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Not a contraction: intuition
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Convergence analysis

Thankfully,

Theorem (Contractivity on smooth Q-functions)

T is a contraction when restricted to the subset L. of Q-functions
such that "Q, is L-Lipschitz with respect to Q. ", with L < % —1.

s _]@s (R2)SA st. 3L < lo1:vseSa,med,
K 1Q:(3,31) — @:(3,32)| < L|Q:(5,31) — Qc(3,32)|

v" We guarantee convergence under some (strong) assumptions

v" We observe empirical convergence

7
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Budgeted Dynamic Programming

Algorithm 1: Budgeted Value-lteration

Data: P, R,, R.
Result: Q*

1 Q<«0

2 repeat

3 \ Qu+1 + T Qx

4 until convergence

7
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Budgeted

Reinforcement
Learning

7
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Extension to the RL setting

We address several limitations of Budgeted Value-Iteration
1. If the P, R, and R. are unknown:

7
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Extension to the RL setting

We address several limitations of Budgeted Value-Iteration
1. If the P, R, and R. are unknown:
> Work with a batch of samples D = {(5;,3;, 1i,5; }ic[o,n]
> Replace T with a sampling operator 7T

A _ _ def [ _—
TQ(51,3,r,5) = ri+7y Z Tgreedy (3}[573 @) Q(S], a7)-

ajeA;
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Extension to the RL setting

We address several limitations of Budgeted Value-Iteration
1. If the P, R, and R. are unknown:
> Work with a batch of samples D = {(5;,3;, 1i,5; }ic[o,n]
> Replace T with a sampling operator 7T

A _ _ def [ _—
TQ(51,3,r,5) = ri+7y Z Tgreedy (3}[573 @) Q(S], a7)-

ajeA;

2. If S is continuous:

> Employ function approximation @y, and minimise a regression
loss

E(Qay Qtarget; D) = Z HQQ(Ea 5) - Qtarget(gy 57 r7§/)||§
D

rd
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Scalable implementation

e CPU parallel computing of the targets
S e, Tereeay (3llsh Q) QS 2)
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e Same for interactions with the environment.
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Scalable implementation

e CPU parallel computing of the targets
S e, Tereeay (3llsh Q) QS 2)

e Same for interactions with the environment.

e Neural Network for function approximation:

Hidden Hidden
Layer 1Layer 2

(57 63) Q

Encoder

7
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Experiments
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A baseline approximate solution

Lagrangian Relaxation

Consider the dual problem so as to replace the hard constraint by a
soft constraint penalised by a Lagrangian multiplier A:

max Z YR (s,a) — MY R:(s, a)
t

e Train many policies m, with penalties Ay and recover the cost
budgets 5y

e Very data/memory-heavy

7
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Dialogue systems

A slot-filling problem: the agent (the dialogue system) fills a form
by asking the user each slot. It can either:

e ask to answer using voice (safe/slow);

e ask to answer with a numeric pad (unsafe/fast).

551 4 BFTQ
v FIQ
504 15
454 i * .4
20
40 pS H)Bé)—ﬂjs
cr Y e
354
o BT
30 35 ﬂ [h-20 € [0.45.1.00]
10 ] 15
25 10
6(
20 .05
154
0.0 0.1 0.2 0.3 0.4 0.5
Gr
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Autonomous driving

The agent (the car) is on a two-way road with a car in front of it,
e it can stay behind (safe/slow);

e it can overtake (unsafe/fast).

74 a BFTQ X 2 v =
v FTQ 3
£ €10.31,1.00]
6
- £ €1021,029]
5
| . AE10.11,0.19]
Gr 10
4
£ €10.01,0.09]
3
EL),()(J

0.1 0.2 0.3 0.4 0.5 0.6
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Risk-sensitive exploration

How to collect the batch D?
We propose an e-greedy exploration procedure:
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Risk-sensitive exploration

How to collect the batch D?
We propose an e-greedy exploration procedure:
e Sample an initial budget Sy ~ U(B)
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Risk-sensitive exploration

How to collect the batch D?

We propose an e-greedy exploration procedure:

e Sample an initial budget Sy ~ U(B)

o At each step, where 5 = (s, 3) only explore feasible budgets:

a=(a,Ba) ~U(AaB)
where A is such that P (a, £a|s, ) verifies E[5,] <

7
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Corridors

Two corridors:
1. one with high costs / high rewards

2. the other with no costs / low rewards

— Validate the risk-sensitive exploration procedure

rd
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Corridors

BFTQ(risk-sensitive) BFTQ(risk-neutral)

v BFTQ(risk-neutral)
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< ® @®
150 4 0.8 I O

$€10,033] O

1254

078 4
100 hi O
Gr .67 g
754 a vy 1.0 || ‘
; 56
s0d e 10,048 g f 1
44 0ll39
a vz
1 67 1
o]
-0.2 O‘D O‘Z 014 0‘5 D‘ﬂ 1‘0 I 1 I I I I
r r r
G~

7
42 -Budgeted Reinforcement Learning- Carrara N., Leurent E. hw


https://budgeted-rl.github.io/#risk-sensitive-exploration

Thank You!
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