Ínría-

Budgeted Reinforcement Learning in Continuous State Space

Nicolas Carrara¹, Edouard Leurent^{1,2}, Tanguy Urvoy³, Romain Laroche⁴, Odalric Maillard¹, Olivier Pietquin^{1,5}

¹Inria SequeL, ²Renault Group, ³Orange Labs, ⁴Microsoft Montréal, ⁵Google Research, Brain Team

Contents

- 01. Motivation and Setting
- 02. Budgeted Dynamic Programming
- 33 Budgeted Reinforcement Learning
- 04. Experiments

01

Motivation and Setting

Learning to act

Optimal Decision-Making

$$\max_{\pi} \mathbb{E}_{a_t \sim \pi(a_t|s_t)} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right]$$

Learning to act

Optimal Decision-Making

$$\max_{\pi} \underset{a_t \sim \pi(a_t|s_t)}{\mathbb{E}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right]$$

- √ A very general formulation
- √ Widely used in the industry

Learning to act

Optimal Decision-Making

$$\max_{\pi} \mathbb{E}_{a_t \sim \pi(a_t|s_t)} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right]$$

- √ A very general formulation
- X Not widely used in the industry

Optimal Decision-Making

$$\max_{\pi} \underset{a_t \sim \pi(a_t|s_t)}{\mathbb{E}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right]$$

- √ A very general formulation
- X Not widely used in the industry
 - > Sample efficiency
 - > Trial and error
 - > Unpredictable behaviour

Reinforcement learning relies on a single reward function R

Reinforcement learning relies on a single reward function R

√ A convenient formulation, but;

Reinforcement learning relies on a single reward function R

- √ A convenient formulation, but;
- X R is not always easy to design.

Reinforcement learning relies on a single reward function R

- √ A convenient formulation, but;
- X R is not always easy to design.

Conflicting Objectives

Complex tasks require multiple contradictory aspects. Typically:

Task completion vs Safety

Reinforcement learning relies on a single reward function R

- √ A convenient formulation, but;
- X R is not always easy to design.

Conflicting Objectives

Complex tasks require multiple contradictory aspects. Typically:

Task completion vs Safety

For example...

Example problems with conflicts

Dialogue systems

A slot-filling problem: the agent fills a form by asking the user each slot. It can either:

- ask to answer using voice (safe/slow);
- ask to answer with a numeric pad (unsafe/fast).

Dialogue systems

A slot-filling problem: the agent fills a form by asking the user each slot. It can either:

- ask to answer using voice (safe/slow);
- ask to answer with a numeric pad (unsafe/fast).

Autonomous Driving

The agent is driving on a two-way road with a car in front of it,

- it can stay behind (safe/slow);
- it can overtake (unsafe/fast).

Reinforcement learning relies on a single reward function R

√ A convenient formulation, but;

X R is not always easy to design.

Conflicting Objectives

Complex tasks require multiple contradictory aspects. Typically:

Task completion vs Safety

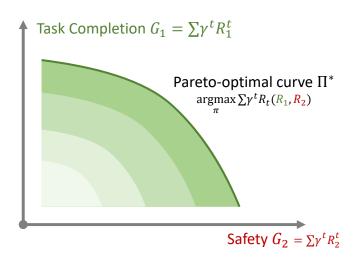
For example...

For a fixed reward function R,

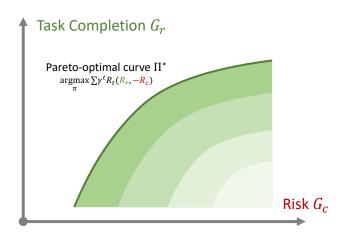
 \rightarrow no control over the $\frac{Task\ Completion}{Safety}$ trade-off

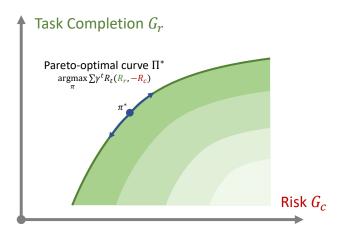
 $\rightarrow \pi^*$ is only guaranteed to lie on a Pareto-optimal curve Π^*

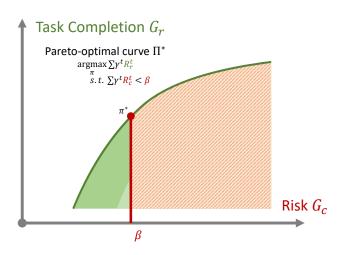
The Pareto-optimal curve



From maximal safety to minimal risk







Constrained Reinforcement Learning

Markov Decision Process

An MDP is a tuple (S, A, P, R_r, γ) with:

• Rewards $R_r \in \mathbb{R}^{S \times A}$

Objective

Maximise rewards

$$\max_{\pi \in \mathcal{M}(\mathcal{A})^{\mathcal{S}}} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{r}(s_{t}, a_{t}) \mid s_{0} = s\right]$$

Constrained Markov Decision Process

A CMDP is a tuple $(S, A, P, R_r, R_c, \gamma, \beta)$ with:

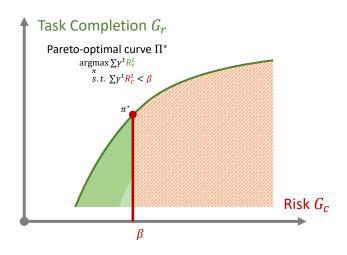
• Rewards $R_r \in \mathbb{R}^{S \times A}$

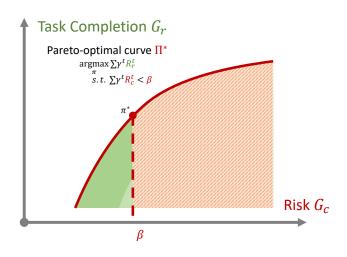
- Costs $R_c \in \mathbb{R}^{S \times A}$
- Budget β

Objective

Maximise rewards while keeping costs under a fixed budget

$$\begin{array}{ll} \max_{\pi \in \mathcal{M}(\mathcal{A})^S} & \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t) \mid s_0 = s\right] \\ \text{s.t.} & \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_c(s_t, a_t) \mid s_0 = s\right] \leq \beta \end{array}$$





Budgeted Markov Decision Process

A BMDP is a tuple $(S, A, P, R_r, R_c, \gamma, B)$ with:

• Rewards $R_r \in \mathbb{R}^{\mathcal{S} \times \mathcal{A}}$

- Costs $R_c \in \mathbb{R}^{S \times A}$
- ullet Budget space ${\cal B}$

Objective

Maximise rewards while keeping costs under an adjustable budget. $\forall \beta \in \mathcal{B}$,

$$\begin{array}{ll} \max_{\pi \in \mathcal{M}(\mathcal{A} \times \mathcal{B})^{\mathcal{S} \times \mathcal{B}}} & \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{r}(s_{t}, a_{t}) \mid s_{0} = s, \beta_{0} = \beta\right] \\ \text{s.t.} & \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \frac{R_{c}(s_{t}, a_{t})}{R_{c}(s_{t}, a_{t})} \mid s_{0} = s, \beta_{0} = \beta\right] \leq \beta \end{array}$$

Problem formulation

Budgeted policies π

- ullet Take a budget eta as an additional input
- Output a next budget β'

•
$$\pi: \underbrace{(s,\beta)}_{\overline{s}} \to \underbrace{(a,\beta')}_{\overline{a}}$$

ightharpoonup Augment the spaces with the budget β

Augmented Setting

Definition (Augmented spaces)

- States $\overline{S} = S \times B$.
- Actions $\overline{\mathcal{A}} = \mathcal{A} \times \mathcal{B}$.
- Dynamics \overline{P} state (s,β) , action $(a,\beta_a) \to \text{next state } \begin{cases} s' \sim P(s'|s,a) \\ \beta' = \beta_a \end{cases}$

Definition (Augmented signals)

- 1. Rewards $R = (R_r, R_c)$
- 2. Returns $G^{\pi} = (G_r^{\pi}, G_c^{\pi}) \stackrel{\text{def}}{=} \sum_{t=0}^{\infty} \gamma^t R(\overline{s}_t, \overline{a}_t)$
- 3. Value $V^{\pi}(\overline{s}) = (V_r^{\pi}, \frac{V_c^{\pi}}{c}) \stackrel{\text{def}}{=} \mathbb{E} [G^{\pi} \mid \overline{s_0} = \overline{s}]$
- 4. Q-Value $Q^{\pi}(\overline{s}, \overline{a}) = (Q_r^{\pi}, Q_c^{\pi}) \stackrel{\text{def}}{=} \mathbb{E}[G^{\pi} \mid \overline{s_0} = \overline{s}, \overline{a_0} = \overline{a}]$

02

Budgeted Dynamic Programming

Policy Evaluation

Proposition (Budgeted Bellman Expectation)

The Bellman Expectation equations are preserved

$$V^{\pi}(\overline{s}) = \sum_{\overline{a} \in \overline{\mathcal{A}}} \pi(\overline{a}|\overline{s}) Q^{\pi}(\overline{s}, \overline{a})$$
$$Q^{\pi}(\overline{s}, \overline{a}) = R(\overline{s}, \overline{a}) + \gamma \sum_{\overline{s}' \in \overline{S}} \overline{P}(\overline{s}' \mid \overline{s}, \overline{a}) V^{\pi}(\overline{s}')$$

Policy Evaluation

Proposition (Budgeted Bellman Expectation)

The Bellman Expectation equations are preserved

$$V^{\pi}(\overline{s}) = \sum_{\overline{a} \in \overline{\mathcal{A}}} \pi(\overline{a}|\overline{s}) Q^{\pi}(\overline{s}, \overline{a})$$

$$Q^{\pi}(\overline{s}, \overline{a}) = R(\overline{s}, \overline{a}) + \gamma \sum_{\overline{s}' \in \overline{S}} \overline{P}(\overline{s}' \mid \overline{s}, \overline{a}) V^{\pi}(\overline{s}')$$

Proposition (Contraction)

The Bellman Expectation Operator \mathcal{T}^{π} is a γ -contraction.

$$\mathcal{T}^{\pi} Q(\overline{s}, \overline{a}) \stackrel{\text{def}}{=} R(\overline{s}, \overline{a}) + \gamma \sum_{\overline{s}' \in \overline{\mathcal{S}}} \sum_{\overline{a}' \in \overline{\mathcal{A}}} \overline{P}(\overline{s}' | \overline{s}, \overline{a}) \pi(\overline{a}' | \overline{s}') Q(\overline{s}', \overline{a}')$$

 \checkmark We can evaluate a budgeted policy π

Definition (Budgeted Optimality)

In that order, we want to:

(i) Respect the budget β :

$$\Pi_{a}(\overline{s}) \stackrel{\text{def}}{=} \{ \pi \in \Pi : V_{c}^{\pi}(s, \beta) \leq \beta \}$$

(ii) Maximise the rewards:

$$V_r^*(\overline{s}) \stackrel{\mathsf{def}}{=} \mathsf{max}_{\pi \in \Pi_{\mathsf{a}}(\overline{s})} V_r^{\pi}(\overline{s}) \qquad \Pi_r(\overline{s}) \stackrel{\mathsf{def}}{=} \mathsf{arg} \, \mathsf{max}_{\pi \in \Pi_{\mathsf{a}}(\overline{s})} V_r^{\pi}(\overline{s})$$

(iii) Minimise the costs:

$$V_c^*(\overline{s}) \stackrel{\mathsf{def}}{=} \mathsf{min}_{\pi \in \Pi_r(\overline{s})} V_c^{\pi}(\overline{s}), \qquad \Pi^*(\overline{s}) \stackrel{\mathsf{def}}{=} \mathsf{arg} \, \mathsf{min}_{\pi \in \Pi_r(\overline{s})} V_c^{\pi}(\overline{s})$$

We define the budgeted action-value function Q^* similarly

Theorem (Budgeted Bellman Optimality Equation)

 Q^* verifies the following equation:

$$\begin{split} Q^*(\overline{s}, \overline{a}) &= \mathcal{T}Q^*(\overline{s}, \overline{a}) \\ &\stackrel{def}{=} R(\overline{s}, \overline{a}) + \gamma \sum_{\overline{s}' \in \overline{\mathcal{S}}} \overline{P}(\overline{s'}|\overline{s}, \overline{a}) \sum_{\overline{a'} \in \overline{\mathcal{A}}} \pi_{greedy}(\overline{a'}|\overline{s'}; Q^*) Q^*(\overline{s'}, \overline{a'}) \end{split}$$

where the greedy policy π_{greedy} is defined by:

$$\begin{split} \pi_{\mathsf{greedy}}(\overline{a}|\overline{s};Q) \in & \mathsf{arg\,min}_{\rho \in \Pi^Q_r} \underset{\overline{a} \sim \rho}{\mathbb{E}} \ Q_c(\overline{s},\overline{a}), \\ \mathsf{where} \quad & \Pi^Q_r \stackrel{\mathsf{def}}{=} \mathsf{arg\,max}_{\rho \in \mathcal{M}(\overline{\mathcal{A}})} \underset{\overline{a} \sim \rho}{\mathbb{E}} \ Q_r(\overline{s},\overline{a}) \\ \mathsf{s.t.} \quad & \mathbb{E} \ Q_c(\overline{s},\overline{a}) \underline{\leq} \ \beta \end{split}$$

The optimal policy

Proposition (Optimality of the policy)

 $\pi_{greedy}(\cdot; Q^*)$ is simultaneously optimal in all states $\overline{s} \in \overline{\mathcal{S}}$:

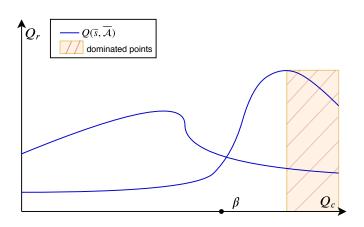
$$\pi_{greedy}(\cdot; Q^*) \in \Pi^*(\overline{s})$$

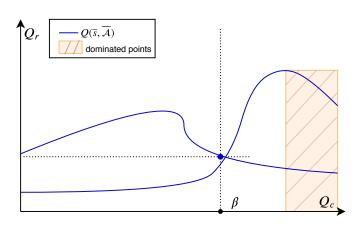
In particular, $V^{\pi_{greedy}(\cdot;Q^*)} = V^*$ and $Q^{\pi_{greedy}(\cdot;Q^*)} = Q^*$.

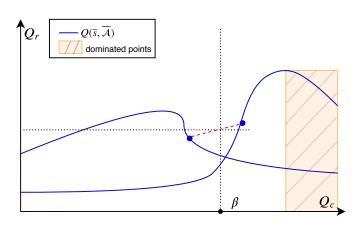
Proposition (Solving the non-linear program)

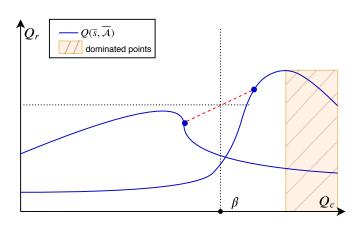
 π_{greedy} can be computed efficiently, as a mixture π_{hull} of two points that lie on the convex hull of Q.

$$\pi_{greedy} = \pi_{hull}$$

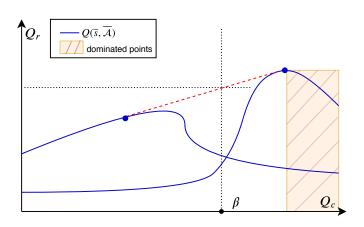








Solving the non-linear program: intuition



Convergence analysis

Recall what we've shown so far:

$$\mathcal{T} \xrightarrow{\textit{fixed-point}} Q^* \xrightarrow{\textit{tractable}} \pi_{\mathsf{hull}}(Q^*) \xrightarrow{\textit{equal}} \pi_{\mathsf{greedy}}(Q^*) \xrightarrow{\textit{optimal}}$$

Convergence analysis

Recall what we've shown so far:

$$\mathcal{T} \xrightarrow{\textit{fixed-point}} \textit{Q}^* \xrightarrow{\textit{tractable}} \pi_{\mathsf{hull}}(\textit{Q}^*) \xrightarrow{\textit{equal}} \pi_{\mathsf{greedy}}(\textit{Q}^*) \xrightarrow{\textit{optimal}}$$

We're almost there!

All that is left is to perform Fixed-Point Iteration to compute Q^* .

Recall what we've shown so far:

$$\mathcal{T} \xrightarrow{\mathit{fixed-point}} Q^* \xrightarrow{\mathit{tractable}} \pi_{\mathsf{hull}}(Q^*) \xrightarrow{\mathit{equal}} \pi_{\mathsf{greedy}}(Q^*) \xrightarrow{\mathit{optimal}}$$

We're almost there!

All that is left is to perform Fixed-Point Iteration to compute Q^* .

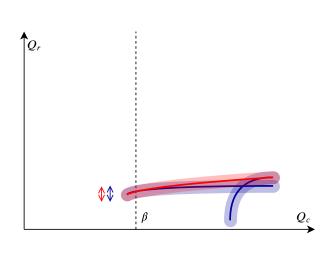
Theorem (Non-Contractivity)

For any BMDP $(S, A, P, R_r, R_c, \gamma)$ with $|A| \ge 2$, T is **not** a contraction.

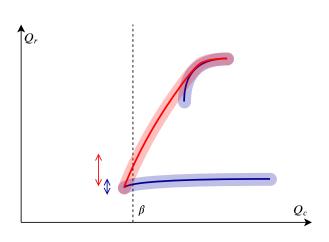
$$\forall \varepsilon > 0, \exists \, Q^1, \, Q^2 \in (\mathbb{R}^2)^{\overline{\mathcal{SA}}} : \|\mathcal{T}Q^1 - \mathcal{T}Q^2\|_{\infty} \geq \frac{1}{\varepsilon} \|Q^1 - Q^2\|_{\infty}$$

X We cannot guarantee the convergence of $\mathcal{T}^n(Q_0)$ to Q^*

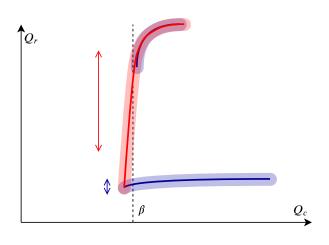
Not a contraction: intuition



Not a contraction: intuition



Not a contraction: intuition



Thankfully,

Theorem (Contractivity on smooth Q-functions)

 ${\cal T}$ is a contraction when restricted to the subset ${\cal L}_{\gamma}$ of Q-functions such that "Q_r is L-Lipschitz with respect to Q_c", with $L<\frac{1}{\gamma}-1$.

$$\mathcal{L}_{\gamma} = \left\{ \begin{array}{l} Q \in (\mathbb{R}^2)^{\overline{\mathcal{S}\mathcal{A}}} \text{ s.t. } \exists L < \frac{1}{\gamma} - 1 : \forall \overline{s} \in \overline{\mathcal{S}}, \overline{a}_1, \overline{a}_2 \in \overline{\mathcal{A}}, \\ |Q_r(\overline{s}, \overline{a}_1) - Q_r(\overline{s}, \overline{a}_2)| \leq L|Q_c(\overline{s}, \overline{a}_1) - Q_c(\overline{s}, \overline{a}_2)| \end{array} \right\}$$

- ✓ We guarantee convergence under some (strong) assumptions
- √ We observe empirical convergence

Budgeted Dynamic Programming

Algorithm 1: Budgeted Value-Iteration

Data: P, R_r, R_c

Result: Q*

$$1 Q_0 \leftarrow 0$$

2 repeat

$$Q_{k+1} \leftarrow \mathcal{T}Q_k$$

4 until convergence

03

Budgeted Reinforcement Learning

We address several limitations of Budgeted Value-Iteration

1. If the P, R_r and R_c are unknown:

We address several limitations of Budgeted Value-Iteration

- 1. If the P, R_r and R_c are unknown:
 - > Work with a batch of samples $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i')\}_{i \in [0, N]}$

We address several limitations of Budgeted Value-Iteration

- 1. If the P, R_r and R_c are unknown:
 - > Work with a batch of samples $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i'\}_{i \in [0, N]}\}$
 - > Replace $\mathcal T$ with a sampling operator $\hat{\mathcal T}$:

$$\hat{\mathcal{T}}Q(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i') \stackrel{\mathsf{def}}{=} r_i + \gamma \sum_{\overline{a}_i' \in \mathcal{A}_i} \pi_{\mathsf{greedy}}(\overline{a}_i' | \overline{s}_i'; Q) Q(\overline{s}_i', \overline{a}_i').$$

We address several limitations of Budgeted Value-Iteration

- 1. If the P, R_r and R_c are unknown:
 - > Work with a batch of samples $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i'\}_{i \in [0, N]}\}$
 - > Replace $\mathcal T$ with a sampling operator $\hat{\mathcal T}$:

$$\hat{\mathcal{T}}Q(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i') \stackrel{\text{def}}{=} r_i + \gamma \sum_{\overline{a}_i' \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a}_i' | \overline{s}_i'; Q) Q(\overline{s}_i', \overline{a}_i').$$

2. If S is continuous:

We address several limitations of Budgeted Value-Iteration

- 1. If the P, R_r and R_c are unknown:
 - > Work with a batch of samples $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i'\}_{i \in [0, N]}\}$
 - > Replace $\mathcal T$ with a sampling operator $\hat{\mathcal T}$:

$$\hat{\mathcal{T}}Q(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i') \stackrel{\text{def}}{=} r_i + \gamma \sum_{\overline{a}_i' \in \mathcal{A}_i} \pi_{\text{greedy}}(\overline{a}_i' | \overline{s}_i'; Q) Q(\overline{s}_i', \overline{a}_i').$$

- 2. If S is continuous:
 - > Employ function approximation $Q_{ heta}$, and minimise a regression loss

$$\mathcal{L}(\textit{Q}_{\theta},\textit{Q}_{\mathsf{target}};\mathcal{D}) = \sum_{\mathbf{\overline{S}}} ||\textit{Q}_{\theta}(\overline{s},\overline{a}) - \textit{Q}_{\mathsf{target}}(\overline{s},\overline{a},\textit{r},\overline{s}')||_{2}^{2}$$

Scalable implementation

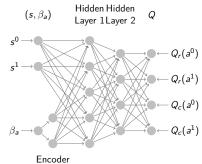
• CPU parallel computing of the targets $\sum_{\overline{a_i'} \in \mathcal{A}_i} \pi_{\mathsf{greedy}}(\overline{a_i'}|\overline{s_i'}; Q) Q(\overline{s_i'}, \overline{a_i'})$

Scalable implementation

- CPU parallel computing of the targets $\sum_{\overline{a_i'} \in \mathcal{A}_i} \pi_{\mathsf{greedy}}(\overline{a_i'}|\overline{s_i'}; Q) Q(\overline{s_i'}, \overline{a_i'})$
- Same for interactions with the environment.

Scalable implementation

- CPU parallel computing of the targets $\sum_{\overline{a_i'} \in \mathcal{A}_i} \pi_{\mathsf{greedy}}(\overline{a_i'}|\overline{s_i'}; Q) Q(\overline{s_i'}, \overline{a_i'})$
- Same for interactions with the environment.
- Neural Network for function approximation:



04

Experiments

A baseline approximate solution

Lagrangian Relaxation

Consider the dual problem so as to replace the hard constraint by a soft constraint penalised by a Lagrangian multiplier λ :

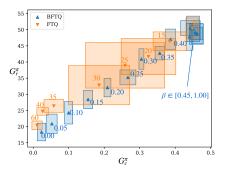
$$\max_{\pi} \mathbb{E} \sum_{t} \gamma^{t} R_{r}(s, a) - \lambda \gamma^{t} R_{c}(s, a)$$

- Train many policies π_k with penalties λ_k and recover the cost budgets β_k
- Very data/memory-heavy

Dialogue systems

A slot-filling problem: the agent (the dialogue system) fills a form by asking the user each slot. It can either:

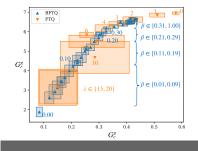
- ask to answer using voice (safe/slow);
- ask to answer with a numeric pad (unsafe/fast).



Autonomous driving

The agent (the car) is on a two-way road with a car in front of it,

- it can stay behind (safe/slow);
- it can overtake (unsafe/fast).



Risk-sensitive exploration

How to collect the batch \mathcal{D} ?

We propose an ε -greedy exploration procedure:

Risk-sensitive exploration

How to collect the batch \mathcal{D} ?

We propose an ε -greedy exploration procedure:

• Sample an initial budget $eta_0 \sim \mathcal{U}(\mathcal{B})$

How to collect the batch \mathcal{D} ?

We propose an ε -greedy exploration procedure:

- Sample an initial budget $eta_0 \sim \mathcal{U}(\mathcal{B})$
- At each step, where $\overline{s} = (s, \beta)$ only explore feasible budgets:

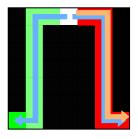
$$\overline{a} = (a, \beta_a) \sim \mathcal{U}(\Delta_{\mathcal{AB}})$$

where Δ is such that $\mathbb{P}(a, \beta_a | s, \beta)$ verifies $\mathbb{E}[\beta_a] \leq \beta$

Corridors

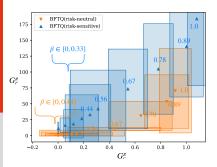
Two corridors:

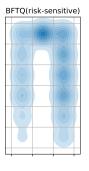
- 1. one with high costs / high rewards
- 2. the other with no costs / low rewards

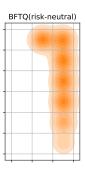


→ Validate the risk-sensitive exploration procedure

Corridors







Thank You!

